EXERCISES FUCHSIAN DIFFERENTIAL EQUATIONS FALL 2022

Herwig HAUSER

29 Let $r(t) \in \mathbb{Q}(t)$ be a rational function and consider the sequence $\left(c_{k}\right)_{k \in \mathbb{N}}$, given by the linear recursion

$$
c_{k+1}=r(k) c_{k},
$$

for $k \geq k_{0}$, and some initial values $c_{0}, \ldots, x_{k_{0}-1}$. Let $y(x)=\sum c_{k} x^{k}$ be the generating function of $\left(c_{k}\right)_{k \in \mathbb{N}}$.
(a) Find a linear differential equation for $y(x)$.
(b) Illustrate your findings in three interesting examples.

30 Let now $L y=0$ be a linear differential equation with coefficients in $\mathbb{Q}(x)$. Assume that $L=L_{0}+L_{1}$, for Euler operators of shifts 0 and 1 . Let $y(x) \in \mathbb{Q}[[x]]$ be a power series solution.
(a) Determine a linear recursion for the coefficient sequence of $y(x)$.
(b) Illustrate your findings in three interesting examples.

31 Let $\delta=x \partial$ and consider the Euler differential operator $L=\delta^{2}-3 \delta-10$.
(a) Compute the indicial polynomial of L and the expansion of L in terms of ∂.
(b) Reduce $L y=0$ modulo all primes p and determine the respective solutions.
(c) Try to find a basis of polynomial solutions.

32 Find two different proofs of the following theorem of Kronecker:
Theorem. If a univariate polynomial $P \in \mathbb{Q}[x]$ factors linearly modulo p for almost all primes p, then it factors linearly as a polynomial in $\mathbb{Q}[x]$.

